Logo of Royal Holloway University of London

MSciComputer Science

Tuition fee To be confirmed
More information

Expenses, accommodation, working etc.

royalholloway.ac.uk/..er-science-msci.aspx 

Overview

This advanced four-year programme offers a thorough grounding in all the latest trends and technologies in the rapidly evolving world of computer science. You will have the chance to complete an extended final year project on a topic of your choice and it is particularly recommended if you want to go on to postgraduate study or a high-level technical career. You will also gain a competitive edge over graduates from standard three-year BSc programmes.

Our progressive curriculum will give you the knowledge and technical skills that employers need, and introduce you to pioneering ideas and technologies to help you to realise your ambitions. You will graduate with transferable skills such as problem-solving, programming, team working, analytical skills, time management and self-motivation, and the confidence and ability to tackle real-world problems in a wide range of application domains. We cover all the essentials of computing and application development, and introduce you to a host of advanced topics, from computer games, machine learning and digital sound and music, to intelligent agents and multi-agents, computational optimisation, advanced data communications, digital forensics and more. You will experiment with programming games, robots, Gadgeteer kits, Subversion, JUnit testing, Scrum-based Agile software and more.

The programme’s modular structure gives you the flexibility to tailor your degree to your interests. At the end of year 1 you will have the option of transferring onto one of our specialist pathways (Artificial Intelligence, Information Security or Distributed & Networked Computing), or adding a year in industry to your degree. Transferring onto our Software Engineering pathway requires previous programming experience and early permission to take the Software Development course in year 1, rather than Object-oriented Programming.

We are a highly respected, research-focused department with award-winning teaching. We offer a summer work placement programme and a dedicated personal adviser to guide you through your studies. You will also be welcome to join our thriving Computing Society. We are one of only seven departments in the UK to hold the Athena SWAN bronze award for our commitment to increasing female participation in computer science.

Programme structure

Year 1

Computing Laboratory (Games)
In this module you will develop an understanding of the basic concepts of 2D game design and apply them to the development of simple games using an objected-oriented approach. You will look at the nature of graphics, animation, and motion, considering the usage of vectors in these techniques. You will also examine the fundamentals of game physics, such as collisions, gravity and ballistics.

Computing Laboratory (Robotics)
In this module you will develop an understanding of the building of computer systems. You will learn about the elementary concepts of robotics, gaining practical experience in programming mobile robots to execute pre-defined movements using Java and Lego NXT. You will also consider the basics of sensors, proportional-integral-derivative (PID) feedback systems, and the principles of localisation.

Internet Services
In this module you will develop an understanding of how the internet works and its key protocols. You will look at the technologies used for web development, including scripting languages and their potential for adding dynamic content to web sites and applications. You will consider the role of web services and related technologies, and will examine the fundamental principles of network security.

Machine Fundamentals
In this module you will develop an understanding of the handling of large and infinite objects within a programming environment. You will learn how to use formal logic to design, reason about and minimise switching circuits, and write basic programs in assembly language. You will consider the binary representations of signed and unsigned integers and how to write regular expressions to describe sets and build deterministic automata to recognise these. You will also examine the use of automata machines in the design and reasoning of sequential flow systems.

Mathematical Structures
In this module you will develop an understanding of the formal resoning for sets, relations, functions and cardinality. You will look at the structures for program data and representation and learn to write and reason recursive definitions and prove results by induction and contradiction. You will consider the representation and reasoning of problems using graphs and the use of vectors and transformations for defining and manipulating graphical objects. You will also examine the usage of probability and statistics in analysing data.

Object Oriented Programming 1
In this module you will develop an understanding of programming and object-orientation concepts. You will learn about program basics, control flow, data structures, objects, exceptions, and file input and output. You will consider how to solve basic programming tasks and the need for program documentation, testing, readability and modifiability.

Object Oriented Programming 2
Software Design
In this module you will develop an understanding of software design and engineering processes, including the Waterfall and Agile methodologies. You will learn how to identify common software requirements and see how these have been considered in existing systems. You will look the techniques of software design and how software engineers communicate their design ideas. You will consider the importance of documentation and the usage of current industry-standard notations such as user stories and the unified modeling language (UML). You will also analyse and critique the design of existing sotware looking at the user experience as a measure of its fitness for purpose.

Year 2

Algorithms and Complexity
In this module you will develop an understanding of the design of algorithms, with a focus on time and space complexity. You will examine basic algorithms, looking at the implementation and analysis of linear search, binary search, and basic sorting, including inerstion sort, selection sort, merger sort, quick sort, and heap sort. You will consider alternative data structure representations, such as binary search trees, hash tables, and binary heaps, and will gain an insight into the basics of graph algorithms.

Databases
In this module you will develop an understanding of the basic concepts of database technology, including the need for database integrity and robustness, and the use of a modern database system in a web-based environment. You will look at database design and the theory of the relational view of data, learn to describe the crucial issues concerning database integrity and recovery from failure, and write search query language (SQL) queries. You will also consider the process of designing and implementing a database, from the user specifications to the final design, and implement an interface to an SQL database using an application programming interface (API).

Introduction to Information Security
In this module you will develop an understanding of how information security may be influenced by real world design and implementation decisions. You will will look at the different cryptographic algorithms, considering their use, advantages and disadvantages. You will use these cryptographic primitives to review and evaluate cryptographic protocols, and examine the rational decisions in the design of tokens and secure elements.

Operating Systems
In this module you will develop an understanding of the function and architecture of network operating systems. You will look at the role of an operating system, considering processes, memory and file systems. You will learn to write basic shell scripts, see how services are used at the operating system-level, and evaluate the theory and practice of existing operating systems. You will also examine the UNIX shell, including starting programs, input and output steams, pipes, filters, and utilities.

Software Engineering
In this module you will develop an understanding of software engineering techniques and the managerial discipline required to work as part of a team. You will look at basic object-oriented concepts and consider the need for effective program documentation, testing, readability, and modifiability. You will consider the tools used to support software development, such as version controllers, debuggers, and code style checkers, and see how these are integrated into an industry-standard development environment (IDE). You will deliver a small-scale project using test-driven development.

Team Project
In this module you will develop an understanding of the role of the computer professional, gaining practical experience in developing medium scale software as part of a team using Scrum-based Agile development. You will apply managerial discipline and learn about the software lifecycle, team development, standard industrial software engineering, project management, use of version control, and integrated development enironments (IDEs). You will see why project cost and effort is hard to estimate, and consider why project quality is hard to prescribe.

Year 3

All modules are optional

Year 4

Optional modules

In addition to these mandatory course units there are a number of optional course units available during your degree studies. The following is a selection of optional course units that are likely to be available. Please note that although the College will keep changes to a minimum, new units may be offered or existing units may be withdrawn, for example, in response to a change in staff. Applicants will be informed if any significant changes need to be made.

Career opportunities

The MSci graduates are highly employable, with a depth of knowledge and practical skills that set them apart from BSc students. After four years of studying you will be confident at developing large and complex systems, solving technical problems, and analysing complex information. Your coursework will have honed your team work, communications, time management and self-motivation skills and allowed you to showcase your abilities as an independent researcher and IT professional. You will have the flexibility to adapt to changes in technology, to innovate, and to critically evaluate the implications of exploiting new technologies.

We work closely with partners in industry who advise us on our curriculum, to make sure it keeps abreast of the latest market needs and trends. This means our graduates are up-to-speed with the latest developments and ready to contribute to the next generation of computing systems. Computer scientists are required in a vast array of fields, including the arts, the media, finance, aerospace health and, of course, the IT sector, using the power of computing to solve real-world problems and build systems that can improve people’s lives.

In recent years, our graduates have successfully pursued careers in everything from network systems design and web development, to business management and finance. They now work in organisations such as: Amazon, American Express, Apple, Bupa, Capita, CGI-Logica, Goldman Sachs, Microsoft, Symantec, among many others. Find out more about what some of our graduates are doing, here.

We run jobs fairs and a short-term work placement scheme, and your personal adviser and the campus Careers team will be on hand to offer advice on career opportunities. We maintain strong links with our alumni, who can often provide advice, contacts and networking opportunities.

Apply now! Fall semester 2021/22
This intake is not applicable

We are currently NOT ACCEPTING applications from NON-EU countries, except Georgia and Serbia.

Application deadlines apply to citizens of: United States

Apply now! Fall semester 2021/22
This intake is not applicable

We are currently NOT ACCEPTING applications from NON-EU countries, except Georgia and Serbia.

Application deadlines apply to citizens of: United States